Question: The main scale of a vernier calliper has $n$ divisions per cm. $n$ divisions of the vernier scale coincide with $(n-1)$ divisions of the main scale. The least count of the vernier callipers is:
a. $\dfrac{1}{(n+1)(n-1)}\ \text{cm}$
b. $\dfrac{1}{n}\ \text{cm}$
c. $\dfrac{1}{n^{2}}\ \text{cm}$
d. $\dfrac{1}{n(n+1)}\ \text{cm}$
Answer. c. $\dfrac{1}{n^{2}}\ \text{cm}$
Solution. The main scale has $n$ divisions per cm, therefore
$
1\ \text{MSD} = \frac{1}{n}\ \text{cm}.
$
Since $n$ vernier divisions coincide with $(n-1)$ main scale divisions,
$
1\ \text{VSD} = \frac{n-1}{n}\ \text{MSD}.
$
The least count is
$
\text{LC} = 1\ \text{MSD} – 1\ \text{VSD}
= \text{MSD}\left(1-\frac{n-1}{n}\right)
= \frac{1}{n}\cdot \text{MSD}.
$
Substituting $\text{MSD}=\tfrac{1}{n}\ \text{cm}$,
$
\text{LC} = \frac{1}{n}\cdot \frac{1}{n} = \frac{1}{n^{2}}\ \text{cm}.
$
Hence, the least count of the vernier callipers is $\dfrac{1}{n^{2}}\ \text{cm}$.