Match Column-I with Column-II. [PMT/NEET-2022]
Column–I | Column–II |
---|---|
(A) Gravitational constant (G) | 1. $[L^{2} T^{-2}]$ |
(B) Gravitational potential energy | 2. $[M^{-1} L^{3} T^{-2}]$ |
(C) Gravitational potential | 3. $[L T^{-2}]$ |
(D) Gravitational intensity | 4. $[M L^{2} T^{-2}]$ |
Choose the correct answer from the options given below:
a. A → 2; B → 1; C → 4; D → 3
b. A → 2; B → 4; C → 1; D → 3
c. A → 2; B → 4; C → 3; D → 1
d. A → 4; B → 2; C → 1; D → 3
Answer: b. A → 2; B → 4; C → 1; D → 3
Explanation:
Let me find the dimensions of each gravitational quantity systematically and match them with the given options.
(A) Gravitational Constant (G)
From Newton’s law of gravitation: $ F = \frac{Gm_1m_2}{r^2} $
Rearranging: $ G = \frac{Fr^2}{m_1m_2} $
- Force F: $ [MLT^{-2}] $
- Distance squared r²: $ [L^2] $
- Product of masses: $ [M^2] $
Therefore: $ [G] = \frac{[MLT^{-2}][L^2]}{[M^2]} = [M^{-1}L^3T^{-2}] $
A matches with 2
(B) Gravitational Potential Energy
Gravitational potential energy is a form of energy, so it has the standard energy dimensions:
$
[PE] = [ML^2T^{-2}] $
B matches with 4
(C) Gravitational Potential
Gravitational potential is defined as gravitational potential energy per unit mass:
$ \text{Potential} = \frac{\text{Potential Energy}}{\text{Mass}} $
$
[V] = \frac{[ML^2T^{-2}]}{[M]} = [L^2T^{-2}] $
C matches with 1
(D) Gravitational Intensity (Gravitational Field)
Gravitational intensity is the same as gravitational acceleration:
$
[g] = [LT^{-2}] $
D matches with 3
Final Matching
- A (Gravitational constant) → 2 $ [M^{-1}L^3T^{-2}] $
- B (Gravitational potential energy) → 4 $ [ML^2T^{-2}] $
- C (Gravitational potential) → 1 $ [L^2T^{-2}] $
- D (Gravitational intensity) → 3 $ [LT^{-2}] $
This corresponds exactly to option b.